Alan G. Wilson, Wiley. (2016) Approaches to Geo-mathematical Modelling: New Tools for Complexity Science: Global Dynamical Input–Output Modelling. Anthony P. Korte and Alan G. Wilson. Published Online: 8 AUG 2016. DOI: 10.1002/9781118937426. (This topic is from mathematical modelling, complexity science and Input–Output Modelling in economics), http://onlinelibrary.wiley.com/doi/10.1002/9781118937426.ch7/summary.

Lee D.J., Cortini R., Korte A.P., Starostin E.L., van der Heijden G. H. M. and Kornyshev A.A. (2013) Chiral eﬀects in dual-DNA braiding. Soft Matter DOI:10.1039/c3sm51573g. (This topic is from theoretical chemistry, but where I apply theoretical mechanics - exact geometric elasticity theory - to DNA and use non-linear PDEs), http://pubs.rsc.org/-/content/articlelanding/2013/sm/c3sm51573g.

Korte, A.P., Starostin E.L. and van der Heijden G.H.M. (2011) Triangular buckling patterns of twisted inextensible strips. Proc. R. Soc. A 467 .pp. 285-303. (This topic is from applied mathematics and physics: theoretical mechanics - exact geometric elasticity theory; numerical solution of non-linear PDEs and bifurcation theory), http://rspa.royalsocietypublishing.org/content/royprsa/467/2125/285.full.pdf.

Korte, A.P. and van der Heijden G.H.M. (2009) Curvature-induced electron localization in developable Möbius-like nanostructures. J. Phys.: Condens. Matter 21 .pp. 495301. (This topic is theoretical physics: the quantum theory of an electron living on the surface of a Möbius strip), http://iopscience.iop.org/article/10.1088/0953-8984/21/49/495301/meta.

Blencowe, M.P., Jones, H.F. and Korte, A.P. (1998) Applying the linear delta expansion to the iφ^{3} potential. Phys. Rev. D 57 .pp. 5092-5099. (This topic is about the quantum theory of the V=iφ^{3} potential, where i=√(-1), but the energy eigenvalues are real!), https://journals.aps.org/prd/abstract/10.1103/PhysRevD.57.5092#fulltext.

Jones, H.F. and Korte, A.P. (1997) Applying the linear delta expansion to disordered systems. Phys. Rev. B 56 .pp. 9422-9430. (This topic is about the electron density of states in a random potential using supersymmetry and a convergent perturbation series - ordinary perturbation theory is commonly divergent), https://journals.aps.org/prb/abstract/10.1103/PhysRevB.56.9422#fulltext.

Book A-level Maths, Further Maths, A-level Physics & Oxford PAT Courses at the London School of Economics, London or Malet Street, London WC1E 7HX& Online